You will notice in the diagram how common divergence and convergence are: how almost as a rule the axon from a cell in a given stage splits on arriving at the next stage and ends on several or many cells, and conversely, a cell at any stage except the first receives synaptic inputs from a few or many cells in the previous stage. We obviously need to amend and qualify this simplified diagram, but at least we have a model to qualify. We must first recognize that at the input end we have not just one but many sensory systems--vision, touch, taste, smell, and hearing--and that each system has its own sets of stages in the brain. When and where in the brain the various sets of stages are brought together, if indeed they are brought together, is still not clear. In tracing one system such as the visual or auditory from the receptors further into the brain, we may find that it splits into separate subdivisions. In the case of vision, these subsystems might deal separately with eye movements, pupillary constriction, form, movement, depth, or color. Thus the whole system diverges into separate subpathways. Moreover, the subpaths may be many, and may differ widely in their lengths. On a gross scale, some paths have many structures along the way and others few. At a finer level, an axon from one stage may not go to the next stage in the series but instead may skip that stage and even the next; it may go all the way to the motor neuron. (You can think of the skipping of stages in neuroanatomy as analogous to what can happen in genealogy. The present English sovereign is not related to William the Conqueror by a unique number of generations: the number of "greats" modifying the grandfather is indeterminate because of intermarriage between nephews and aunts and even more questionable events.) When the path from input to output is very short, we call it a reflex. In the visual system, the constriction of the pupil in response to light is an example of a reflex, in which the number of synapses is probably about six. In the most extreme case, the axon from a receptor ends directly on a motor neuron, so that we have, from input to output, only three cells: receptor, motor neuron, and muscle fiber, and just two synapses, in what we call a monosynaptic reflex arc. (Perhaps the person who coined the term did not consider the nerve-muscle junction a real synapse, or could not count to two.) That short path is activated when the doctor taps your knee with a hammer and your knee jumps. John Nicholls used to tell his classes at Harvard Medical School that there are two reasons for testing this reflex: to stall for time, and to see if you have syphilis.